

CBTM

Communications Based Train Management

March 3, 2005

RSAC PTC Working Group

- Established safety objectives for PTC systems
 - Prevent Train-to-Train Collisions
 - Enforce Speed Restrictions
 - Provide Protection for Roadway Workers
- Does not imply vitality or moving block
- CBTM meets these objectives

PTC versus PTS

- PTS (Positive Train Separation)
 - Describes any processor-based train control system that meets only the first core objective:
 - Prevent Train-to-Train collisions
- CBTM is more than just PTS

RSAC PTC Working Group cont'd

- Developed the Notice of Proposed Rulemaking (NPRM)
 - Applies to processor-based signal and train control systems, which contain new or novel technology
 - Includes overlay systems such as CBTM
 - Rule requires the railroad meet a performance standard, i.e. the new implementation must be as good or better than the existing system
 - Requires a risk assessment to compare the base case (existing system) to the proposed system
 - CSXT believes CBTM meets this requirement

C B T M

- Development and testing of CBTM began before the completion of the NPRM
 - Applied for and received a test waiver from the FRA

CBTM

- CBTM is an overlay, safety enhancement system currently for non-signaled territory
- Existing method of operation remains in place
- Crew maintains primary responsibility
 - CBTM does not display authorities or messages unless train is enforced

CBTM Is Not Vital

- CBTM is not trying to replace existing systems
 - CBTM relies on these proven forms of train control
- CBTM is considered to be a safety-critical system
 - It must perform correctly to provide protection for equipment and personnel
- CBTM performs no vital functions
 - Vital functions are required to be implemented in a fail safe manner, i.e. a failure will not result in the system entering or maintaining an unsafe state or it will assume a known safe state
 - A failure of CBTM has the effect of suspending the safety benefits associated with its use
 - There is no need to fallback to another method of operation

C B T M

Why?

- Simple
- Achieves the required safety benefits
- Future potential
 - Basic principles are applicable to signal territory
 - Development and lab testing complete

CBTM

- Enhances safety by:
 - Enforcing train stop at end of authority
 - Predictively and reactively enforcing both temporary and permanent speed restrictions
 - Monitoring manual switch position

C B T M

- Enhances safety by:
 - Protecting the entrance to engineering department work authorities, thereby protecting Roadway Workers
 - Reacting to dynamic changes to authorities

CBTM - How it works

GENERATION OF TARGETS

CBTM is continuously monitoring train speed relative to the maximum permissible speed, for reactive enforcement purposes

GENERATION OF TARGETS

TARGETS:

- Enforcement of the switch position at S. Irby
- Entrance to the Conditional Stop (Work Zone), which is time dependent
- Enforcement of switch position at N. Waterloo
- Speed reduction to 25 MPH
- Zero speed target at the end of the Waterloo block

CBTM Program Goals and Objectives

- Conduct an approved test program for new technology
 - Eliminate issues preventing implementation
- Gather data on system performance and evaluate effectiveness
 - Identify and implement enhancements
 - Resolve system issues
- Evaluate technological advances
 - Drive down implementation costs
 - E.g. CBTM territory is the test bed for the FRA sponsored development and testing of a Communications Management Unit (CMU)
 - Goal is to support interoperability between PTC systems